Hedetniemi's Conjecture and Dense Boolean Lattices
نویسنده
چکیده
The category D of finite directed graphs is cartesian closed, hence it has a product and exponential objects. For a fixed K, let K be the class of all directed graphs of the formK, preordered by the existence of homomorphisms, and quotiented by homomorphic equivalence. It has loong been known that K, is always boolean lattice. In this paper we prove that for any complete graph Kn with n ≥ 3, K n is dense, hence up to isomorphism it is the unique countable dense boolean lattice. In graph theory, the structure of K n is connected to the conjecture of Hedetniemi on the chromatic number of a categorical product of graphs.
منابع مشابه
Lattices arising in categorial investigations of Hedetniemi's conjecture
We discuss Hedetniemi's conjecture in the context of categories of relational structures under homomorphisms. In this language Hedetniemi's conjecture says that if there are no homomor-phisms from the graphs G and H to the complete graph on n vertices then there is no homomorphism from G x H to the complete graph. If an object in some category has just this property then it is called multiplica...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملFrankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملAlgebraic Properties of Intuitionistic Fuzzy Residuated Lattices
In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...
متن کاملA Class of lattices and boolean functions related to a Manickam-Mikl\"os-Singhi Conjecture
The aim of this paper is to build a new family of lattices related to some combinatorial extremal sum problems, in particular to a conjecture of Manickam, Miklös and Singhi. We study the fundamentals properties of such lattices and of a particular class of boolean functions defined on them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 28 شماره
صفحات -
تاریخ انتشار 2011